martes, 28 de junio de 2016

Energía

Energía

El término energía (del griego ἐνέργεια enérgeia, «actividad», «operación»; de ἐνεργóς energós, «fuerza de acción» o «fuerza de trabajo») tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento.

En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para poder extraerla, transformarla y darle un uso industrial o económico.

EL CONCEPTO DE ENERGÍA EN FÍSICA

Mecánica clásica

En física clásica, la ley universal de conservación de la energía —que es el fundamento del primer principio de la termodinámica—, indica que la energía ligada a un sistema aislado permanece constante en el tiempo. Eso significa que para multitud de sistemas físicos clásicos la suma de la energía mecánica, la energía calorífica, la energía electromagnética, y otros tipos de energía potencial es un número constante. Por ejemplo, la energía cinética se cuantifica en función del movimiento de la materia, la energía potencial según propiedades como el estado de deformación o a la posición de la materia en relación con las fuerzas que actúan sobre ella, la energía térmica según su capacidad calorífica, y la energía química según la composición química.

Mecánica relativista
En teoría de la relatividad el principio de conservación de la energía se cumple, aunque debe redefinirse la medida de la energía para incorporar la energía asociada a la masa, ya que en mecánica relativista, si se considerara la energía definida al modo de la mecánica clásica entonces resultaría una cantidad que no conserva constante. Así pues, la teoría de la relatividad especial establece una equivalencia entre masa y energía por la cual todos los cuerpos, por el hecho de estar formados de materia, poseen una energía adicional equivalente a {\displaystyle \scriptstyle E=mc^{2}} {\displaystyle \scriptstyle E=mc^{2}}, y si se considera el principio de conservación de la energía esta energía debe ser tomada en cuenta para obtener una ley de conservación (naturalmente en contrapartida la masa no se conserva en relatividad, sino que la única posibilidad para una ley de conservación es contabilizar juntas la energía asociada a la masa y el resto de formas de energía).

Mecánica cuántica
En mecánica cuántica el resultado de la medida de una magnitud en el caso general no da un resultado determinista, por lo que solo puede hablarse del valor de la energía de una medida no de la energía del sistema. El valor de la energía en general es una variable aleatoria, aunque su distribución sí puede ser calculada, si bien no el resultado particular de una medida. En mecánica cuántica el valor esperado de la energía de un estado estacionario se mantiene constante. Sin embargo, existen estados que no son propios del hamiltoniano para los cuales la energía esperada del estado fluctúa, por lo que no es constante. La varianza de la energía medida además puede depender del intervalo de tiempo, de acuerdo con el principio de indeterminación de Heisenberg.

Expresión matemática
La energía es una propiedad de los sistemas físicos, no es un estado físico real, ni una «sustancia intangible». En mecánica clásica se representa como una magnitud escalar. La energía es una abstracción matemática de una propiedad de los sistemas físicos. Por ejemplo, se puede decir que un sistema con energía cinética nula está en reposo. En problemas relativistas la energía de una partícula no puede ser representada por un escalar invariante, sino por la componente temporal de un cuadrivector energía-momento (cuadrimomento), ya que diferentes observadores no miden la misma energía si no se mueven a la misma velocidad con respecto a la partícula. Si se consideran distribuciones de materia continuas, la descripción resulta todavía más complicada y la correcta descripción de la cantidad de movimiento y la energía requiere el uso del tensor de energía-impulso.

Se utiliza como una abstracción de los sistemas físicos por la facilidad para trabajar con magnitudes escalares, en comparación con las magnitudes vectoriales como la velocidad o la aceleración. Por ejemplo, en mecánica, se puede describir completamente la dinámica de un sistema en función de las energías cinética, potencial, que componen la energía mecánica, que en la mecánica newtoniana tiene la propiedad de conservarse, es decir, ser invariante en el tiempo.

Matemáticamente, la conservación de la energía para un sistema es una consecuencia directa de que las ecuaciones de evolución de ese sistema sean independientes del instante de tiempo considerado, de acuerdo con el teorema de Noether.

Energía en diversos tipos de sistemas físicos

La energía también es una magnitud física que se presenta bajo diversas formas, está involucrada en todos los procesos de cambio de estado físico, se transforma y se transmite, depende del sistema de referencia y fijado este se conserva. Por lo tanto, todo cuerpo es capaz de poseer energía en función de su movimiento, posición, temperatura, masa, composición química, y otras propiedades. En las diversas disciplinas de la física y la ciencia, se dan varias definiciones de energía, todas coherentes y complementarias entre sí, y todas ellas siempre relacionadas con el concepto de trabajo.

Potencia

POTENCIA!!

Cuando estudiamos el movimiento desde el punto de vista energético, basándonos en el concepto de trabajo mecánico, no tenemos en cuenta el factor tiempo. En este apartado vamos a profundizar sobre el concepto de potencia en Física, necesario, entre otras cosas, para el estudio de las máquinas, algunas de las cuales, como las grúas de carga o las tuneladoras, tienen por principal función el desarrollo del máximo trabajo en el menor tiempo posible.

Se define la potencia como la rapidez con la que se realiza un trabajo. Su expresión viene dada por:

P=W/t

Donde:

P: Potencia desarrollada por la fuerza que realiza el trabajo. Su unidad de medida en el Sistema Internacional es el Vatio (W)

W: Trabajo. Su unidad de medida en el Sistema Internacional es el Julio (J)

t: Tiempo durante el cual se desarrolla el trabajo. Su unidad de medida en el Sistema Internacional es el segundo (s).

Trabajo (física)

Trabajo (física)

En mecánica clásica, se dice que una fuerza realiza trabajo cuando altera el estado de movimiento de un cuerpo. El trabajo de la fuerza sobre ese cuerpo será equivalente a la energía necesaria para desplazarlo[1] de manera acelerada. El trabajo es una magnitud física escalar que se representa con la letra W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Ya que por definición el trabajo es un tránsito de energía,[2] nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

Momento de fuerza

MOMENTO DE FUERZA

En mecánica newtoniana, se denomina momento de una fuerza (respecto a un punto dado) a una magnitud (pseudo)vectorial, obtenida como producto vectorial del vector de posición del punto de aplicación de la fuerza (con respecto al punto al cual se toma el momento) por el vector fuerza, en ese orden. También se denomina momento dinámico o sencillamente momento.

Ocasionalmente recibe el nombre de torque a partir del término inglés (torque), derivado a su vez del latín torquere (retorcer).

Leyes de Newton

Las leyes de Newton, también conocidas como leyes del movimiento de Newton,[1] son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la mecánica, en particular aquellos relativos al movimiento de los cuerpos, que revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo.

Constituyen los cimientos no solo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.[2]

En concreto, la relevancia de estas leyes radica en dos aspectos: por un lado constituyen, junto con la transformación de Galileo, la base de la mecánica clásica, y por otro, al combinar estas leyes con la ley de la gravitación universal, se pueden deducir y explicar las leyes de Kepler sobre el movimiento planetario. Así, las leyes de Newton permiten explicar, por ejemplo, tanto el movimiento de los astros como los movimientos de los proyectiles artificiales creados por el ser humano y toda la mecánica de funcionamiento de las máquinas. Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiæ naturalis principia mathematica.[nota 1]

La dinámica de Newton, también llamada dinámica clásica, solo se cumple en los sistemas de referencia inerciales (que se mueven a velocidad constante; la Tierra, aunque gire y rote, se trata como tal a efectos de muchos experimentos prácticos). Solo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz; cuando la velocidad del cuerpo se va aproximando a los 300 000 km/s (lo que ocurriría en los sistemas de referencia no-inerciales) aparecen una serie de fenómenos denominados efectos relativistas. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.